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Shining a New Light on the 
Riddle of Shear
by Jack J. Poldon, Neil A. Hoult, and Evan C. Bentz

D espite over 100 years of reinforced concrete research, 
the precise load-carrying mechanism for shear is still 
up for debate.1 Past researchers have characterized 

shear failures through empirical relations based on limited 
measurement data leading to design codes around the world 
using different approaches to estimate shear strength. But with 
the emergence of distributed sensors, namely distributed fiber 
optic sensors (DFOS) and digital image correlation (DIC), the 
potential now exists to characterize the behavior of reinforced 
concrete with a new level of accuracy, and to find an answer 
to the riddle of shear.2 

While the ACI shear provisions for members with stirrups 
are well established, there are numerous cases where a more 
robust understanding is helpful, such as assessing the strength 
of existing structures designed by older codes or with poor 
details, and displacement-sensitive members subjected to high 
shear forces like transfer girders. The irregularly shaped and 
nonorthogonal transfer girders in Fig. 1, for example, require 
a robust understanding of shear to ensure proper performance 
at both serviceability and ultimate limit states (ULS). In cases 
where a transfer girder supports many stories of a building, 
the displacement of these highly loaded members can govern 
design. Also, as the industry moves toward reducing its carbon 
footprint, finding efficiencies in design will become 
increasingly important and this will only be successful if the 
limitations of the basic design models are understood.

This article examines the ACI 318 assumptions and design 
approaches for shear using the results from beam tests with 
varying shear reinforcement designs measured with emerging 
sensor technologies. After the research campaign is described, 
the distributed measurements are presented with discussion of 
the key insights. Finally, takeaway messages are presented 
for designers.

Experimental Campaign
Specimen design

This study focused on three reinforced concrete beams 
named JP-1, JP-2, and JP-3 which were designed with varying 
shear reinforcement, as summarized in Fig. 2 and tested in 
three-point bending. Specimen JP-1, which contained slightly 

more than the ACI minimum shear reinforcement, had a shear 
reinforcement ratio (ρv = Av / (bw ‧ s)) of 0.11% using single 
legged 10M stirrups at a spacing of 300 mm, and was 
designed to fail in shear before the longitudinal reinforcement 
yielded. Specimen JP-2 had a ρv of 0.22% using double legged 
10M stirrups at 300 mm spacing, and was designed to fail in 
shear at about the same applied load as that required to cause 
a flexural failure. Specimen JP-3 contained the most shear 
reinforcement. It had a ρv of 0.33% using double legged 10M 
stirrups at a 200 mm spacing and was designed to reach its 
flexural strength and undergo extensive plastic deformation 
before a shear failure was expected to eventually occur. 

Other than the levels of shear reinforcement, the three 
beams had the same overall geometry with a length of 4880 mm, 
height of 750 mm, and width of 300 mm. The beams also 
contained the same amount of tension reinforcement  
(ρ = As / (b ‧ d) = 1.47%) provided by three 35M bars. 
Specimen JP-1 contained a single 20M bar for compression 
reinforcement, while JP-2 and JP-3 both contained two 20M 
bars for compression reinforcement. Uniaxial tension test 
results for the 10M and 35M are shown in Fig. 2, along with 
the Ramberg-Osgood coefficients used to translate the 
measured DFOS strain measurements to stresses.3 The 20M 
steel had a measured yield strength of 430 MPa.

Fig. 1: Transfer girders at the Paul S. Sarbanes Transit Center in 
Spring City, MD, USA (photo courtesy of Evan Bentz)



18     FEBRUARY 2023  |  Ci  |  www.concreteinternational.com

The concrete mixture was intended to be the same for all 
three beams, supplied by a ready mixed concrete company, 
with a specified 28-day compressive strength of 35 MPa and a 
maximum coarse aggregate size of 19 mm. On the dates of 
beam testing, concrete cylinder tests determined the 
compressive strength of the concrete to be 32 MPa, 33 MPa, 
and 46 MPa, for JP-1, JP-2, and JP-3, respectively.

Distributed sensors
The distributed fiber optic sensing technology employed in 

this study is based on the measurement of Rayleigh backscatter, 
which is well suited for studying reinforcement strains 
because of its ability to measure distributed strain accurately 
and over many meters of fiber. DFOS works by shining a 
laser down the core of a fiber optic cable, which is only 8 
micrometers in diameter (smaller than a human hair), and 
measuring the light that reflects off internal flaws back to the 
instrument. Strain measurements can be taken with variable 
sensor gauge lengths and spacings, where measurement 

accuracy of 1 microstrain within the 
optical fiber’s core is possible.4 In this 
study, 10 mm gauge lengths and sensor 
spacings were used. For the three 
beams, the fiber optic cables were 
bonded to the reinforcement cage prior 
to concrete casting5 as shown in Fig. 3. 
Fiber optic cables were installed on both 
longitudinal ribs of the reinforcing bars 
so the effects of bar bending could be 
measured but also mitigated by 
averaging the measurements. 
Considering all the bonded fiber optic 
cables on the steel reinforcement and 
the 10 mm sensor spacing, the three 
beams collectively contained the 
equivalent of about 20,000 conventional 
strain gauges.

The DIC technique employed in this study was a two-
dimensional (2-D) DIC algorithm known as geoPIV,6 which 
operates by tracking the translation of subsets (a specific 
group of pixels) throughout a sequence of digital images. 
When the relative movement of subsets is determined, crack 
width and slip measurements can be found as shown by 
Hoult et al.7

Testing protocol
As shown in Fig. 2, the beams were tested in three-point 

bending with an overall span on-center of 4200 mm. Thus, 
with an effective depth (d) of 681 mm, the shear span-to-depth 
(a/d) ratio was 3.1, meaning the specimens were slender 
beams from an analysis point of view. The beams were loaded 
in displacement control at a rate of 1 mm/min with a 2000 kN 
capacity hydraulic jack. Loading was paused every 50 kN 
for approximately 20 minutes so the DFOS and DIC 
measurements could be recorded. In addition to the distributed 
sensors, linear potentiometers (LPs) measured the beam 
displacements at midspan while the applied load was 
measured with a load cell as shown in Fig. 2.

Measurements and Insights
Shear and bending deflections

The load (P) versus midspan deflection responses (ΔExp. 
curves) of the three beams are summarized in Fig. 4(a) through 
(c), which shows that JP-1 and JP-2 experienced brittle shear 
failures, while JP-3 underwent flexural yielding before an 
anchorage failure was observed at the north end.5 Because 
these ΔExp. measurements represent the total displacement from 
a displacement transducer placed at the midspan of the beams, 
ΔExp. includes both bending deformations from curvature and 
shear deflections from shear strains, though the latter are 
usually ignored by designers. Distributed sensing enables the 
bending and shear deflection components to be decoupled as 
they were measured independently. 

The DFOS longitudinal reinforcement strains could be 

Fig. 2: Test set-up, reinforcement for the three beam specimens, and material properties

Fig. 3: Reinforcement cage of specimen JP-2 being lowered into the 
forms prior to concrete casting with DFOS bonded to the 20M 
reinforcement and 10M stirrups visible
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used to calculate the bending deflections (Δbending) while DIC 
could be used to calculate the shear deflections (Δshear). The 
flexural deflections were determined through taking the DFOS 
strains along the top and bottom reinforcement bars, 
computing a curvature graph with length, and then performing 
double integration to find the deflected shape.8 Meanwhile, 
distributed shear strains (γ) were calculated along the north 
shear spans of the three beams by placing the DIC subsets in a 
similar arrangement as can be done with two perpendicular 
displacement transducers installed at a 45-degree angle to the 
longitudinal axis of the beam.9 The average shear strain along 
the north shear span was then multiplied by shear span (a) 
(where, Δshear = γ ‧ a) to find the shear deflection for any given 
load stage.8 

As seen in Fig. 4(a) through (c), the total beam deflections 
calculated from the distributed measurements (Δtotal,ds) are in 
good visual agreement with those obtained directly from the 
linear potentiometers placed under the beams’ midspan. 
Additionally, until an applied load of about 400 kN, the total 
beam deflections were primarily due to bending because the 
beams had not yet developed shear cracks. However, as 
significant diagonal cracks developed, the shear deflection 
(Δshear) became non-negligible. This meant that at service 
conditions, the shear deflection represented about 25% of the 
total (where service conditions were taken as 60% of the ACI 
318 estimated member strength), as seen in Fig. 4(d). The 
percentage of total deflection attributable to shear (Δshear / 
Δtotal,ds) was found to increase with applied loading, where at 
the ultimate load it represented up to 42% for specimen JP-1. 
The proportion of total deflection due to shear at the ultimate 
load went down as the shear reinforcement ratio increased 
partly because JP-3 did not fail in shear, but also because 
higher shear reinforcement levels result in lower shear strains 
for a given shear stress. It can be concluded from Fig. 4 that 
curvature plus shear strain is sufficient to model overall 
member displacement in a transfer girder, and many designs 
of such members are likely systematically underestimating 
displacements by ignoring shear strains. 

Components of shear-carrying 
mechanism

The real power of distributed sensing 
for understanding shear is not the ability 
to measure what a dial gauge could, but 
to help understand what is happening 
inside a member during loading. The 
ability to determine internal steel 
stresses and crack movement at any 
location in the member allows for the 
generation of detailed free body diagrams 
(FBDs) based on the fundamentals of 
equilibrium, compatibility, and stress-
strain relationships. Figure 5 shows an 
FBD of beam JP-2 at an applied load of 
735 kN cut along a shear crack that 

Fig. 5: Free body diagram (FBD) of beam JP-2 at P = 735 kN, where force components are 
calculated from DFOS strain and DIC crack width and slip measurements

formed in the north span, defined as crack JP-2 C2. 
The steel forces displayed are not based on a numerical 

model or code equation but rather on direct strain 
measurements from the distributed sensors and material 
models.10 In Fig. 5, the stirrup tension forces (Ft,S5 and Ft,S6) 
are based on the peak DFOS strains measured on the two legs 
of the double legged stirrups, which were transformed into 
stresses through the Ramberg-Osgood function presented in 

Fig. 4: Load versus midspan deflection responses: (a) load-
displacement of JP-1 with a depiction of shear and bending 
components; (b) JP-2; (c) JP-3; and (d) shear displacement as a 
percentage of total displacement at service and ultimate loads

(b)

(c) (d)

(a)
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Fig. 2 and multiplied by the reinforcement area.3 The force in 
the tension reinforcement was found using the same process 
for the 35M reinforcing bars at the observed crack location. 
The compressive concrete force (Cc) and compressive 
reinforcement force (Cs) were found by assuming plane 
sections remain plane at the cut location (LFBD), where the 
compressive strain profile was assumed to be linear and 
defined using the DFOS strains from the top and bottom 
reinforcement at that location to determine the neutral axis 
depth (c). To determine Cc, the strains were converted to 
stresses using the elastic modulus from Eurocode 2,11 which 
equalled 31.5 GPa, as this was found to model the short-term 
behavior of the concrete better than the ACI Code equation.12 
Lastly, the normal and shear crack forces (Ncr and Vcr) were 
found using the measured distributed crack width and slip 
measurements from the DIC analysis and an aggregate 
interlock model known as the contact density model.13 From 
these measurements, the shear and normal stresses on the 
crack surface could be estimated, which were then multiplied 
by the crack area.

Based on the distributed measurements and material 
models, this approach resulted in an FBD that is close to being 
in equilibrium, with a 26 kN‧m imbalance in the moment and 
−43 kN imbalance in the x-direction. When these imbalances 
are compared to the applied moment at the cut face (ML=1.85 m) 
and the tension steel force (Ts = 888 kN), the FBD is only 
imbalanced by about 5%, which given the potential variation 
in parameters such as the modulus of elasticity and the stress 
carried along the crack is very promising. In this analysis, the 
y-direction is in perfect equilibrium because the remaining 
vertical force was set to equal the unknown shear force in the 
flexural compression region (Vcomp). At P = 735 kN, Vcomp 
represented 15% of the reaction force (R) which is close to the 
~20% value that Mörsch14 predicted over 100 years ago.

The FBD being close to equilibrium without modifications 
to the constitutive models implies a number of conclusions:  
1) there is shear carried in the flexural compression region of 
members with stirrups, but it is a relatively small contribution; 
2) it is realistic to assume, for slender members like these with 
stirrups, that the concrete contribution (Vc) is the integral of 
aggregate interlock stresses along the crack plus the small 
compression region force; and 3) the source of the stirrup 
contribution to shear strength (Vs) is the force in stirrups 
crossing the cracks. Note that the pair of fiber optic cables on 
each bar allowed bar bending and dowel action in stirrups and 
flexural reinforcement to be evaluated. These forces were 
found to be small10 and thus are not shown in Fig. 5. 

In addition to the core conclusions previously mentioned, 
another observation from the FBD in Fig. 5 comes from the 
magnitude of the flexural compression and tensile forces. It is 
apparent that the tension force arrow (Ts = 888 kN) and 
combined compression force arrows (Cc + Cs = 625 kN) are 
unequal. Indeed, the difference of 263 kN is 10 times the 
self-weight of the beam and thus much more than a 
measurement error. The reason this occurs is that the aggregate 
interlock forces on the crack provide a vertical component 
carrying shear but also a significant horizontal component.

Lest the reader was to conclude that the shear on the crack 
is not the primary source of Vc, consider that if normal and 
shear crack forces (Ncr and Vcr) were ignored, the x-imbalance 
would climb to the noted 263 kN, with a similar increase to 
the moment imbalance. In the vertical direction, the lack of 
aggregate interlock would also cause the calculated shear in 
the compression region to equal 49% of the reaction force or 
an equivalent maximum shear stress of 5.43 MPa. This shear 
stress combined with the axial stress in Fig. 5 would exceed 
the diagonal cracking strength in the compression chord, yet 
this cracking was not observed in the test. Therefore, the 

assumption that all the Vc shear is 
carried in the compression region cannot 
be the full story.

Effect of shear on longitudinal 
behavior

One cause of the difference in the 
tension and compression forces in the 
FBD of Fig. 5 is because these regions 
are not just resisting flexure but also 
shear. This mechanism is highlighted in 
the DFOS strain measurements of the 
top and bottom reinforcements in a 
combined distributed measurement 
(CDM) plot in Fig. 6.8 This figure 
shows the DFOS strains spaced every 
10 mm along the longitudinal 
reinforcement bars from JP-2 at an 
applied point load of 735 kN. The 
measured tensile (shaded in blue) and 
compressive (shaded in green) DFOS 

Fig. 6: Combined distributed measurement (CDM) plot of specimen JP-2 at P = 735 kN with 
compressive and tensile reinforcement strains
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strains are compared to predictions based on several cracked 
section analyses (the purple and gold lines). The CDM is 
plotted with the corresponding cracking pattern, which 
contains diagonal shear cracking on both shear spans. The 
DFOS strains from the tensile reinforcement are not linear 
with beam length due to tension stiffening effects along the bar. 
However, the measured DFOS strains also do not follow the 
transformed cracked section estimate, drawn in purple and 
labeled as Cracked Section. Generally, the tension 
reinforcement DFOS strains were significantly higher than the 
Cracked Section strains, while the compressive reinforcement 
strains were significantly lower than the Cracked Section 
strains, particularly away from midspan. 

This effect, sometimes called a moment shift, can be 
explained by the inset FBD in Fig. 6. If the member is assumed 
to be diagonally cracked with a series of parallel cracks, a field 
of diagonal compression will form in the web of the member to 
carry the shear, which also results in an additional horizontal 
force of Vcotθ. This horizontal compressive component is 
centered  in the web and thus can be modeled as resisted by two 
additional horizontal tensile forces of 0.5Vcotθ, one at the level 
of the tension reinforcement and the other within the flexural 
compression region. The Cracked Section + Shear Effect 
prediction with the gold line fits the measured DFOS strain 
data more closely than a flexure-only approach. Thus, the 
argument that the difference in horizontal flexural forces on 
the top and bottom of the section are caused by aggregate 
interlock stresses is only part of the story: locally at the crack 
they are caused by aggregate interlock, but on average they 
can also be derived directly from the shear stresses themselves 
assuming only that the member is diagonally cracked. This 
sort of triangulation of evidence suggests that the analysis in 
this article is on the right track. 

A critical parameter in the Cracked Section + Shear Effect 
prediction is the angle of principal 
compressive stress (θ). In the case of the 
Cracked Section + Shear Effect 
prediction in Fig. 6, θ was taken as 45 
degrees, which ACI 318 recommends 
for shear design.15 An alternative 
approach is to determine the average 
angle of diagonal principal compressive 
stress experimentally through fitting the 
Cracked Section + Shear Effect 
prediction to the DFOS tension 
reinforcement strain.10,12 This approach 
was applied to the data in Fig. 6, as 
indicated by the dashed gold line. At P 
= 735 kN in Fig. 6, θ was found to be 
28 degrees on the north span and 31 
degrees on the south span. This hints at 
a potential opportunity to refine Code 
approaches and will be discussed further.

Another consequence of the shear 
cracking is that the 0.5Vcotθ component 

on the compressive side reduces the measured strain to such 
an extent that tension is both measured and predicted in the 
top chord of the beam, where the bending moment is small 
near the support. This behavior can be seen in Fig. 6, where 
over the north support, a location exists where the 
compressive reinforcement strain exceeds the cracking strain 
of the concrete and, thus, a crack was likely present, though it 
was too small for the authors to locate. This leads to an 
interesting consideration for design, in that reinforcement is 
required in an area where one might typically assume it is not 
needed for flexure alone. 

Stirrup response
Another key to unlocking the riddle of shear is to 

understand the response of the transverse reinforcement so 
that the ACI 318 Vs term can be evaluated. DFOS strain 
results from one of the stirrup legs of stirrup S6 in beam 
JP-2 are displayed in Fig. 7(b). Stirrup S6 was located 1.69 
m from the north end and crossed several shear cracks  
(Fig. 7(a)), as reflected in the peaks in strain observed over 
the height of the stirrup. It is clear from these DFOS results 
that the response of a stirrup is highly variable over the 
member height. Therefore, a single strain gauge is 
inadequate for measuring the stirrup demand because it 
cannot be guaranteed that the gauge will be at the crack 
location and hence measure the critical strain. 

Meanwhile, the stresses in the stirrup are shown in Fig. 7(c). 
The distributed stress profile for the stirrup was more constant 
over the height versus the strain response, particularly at the 
highest applied load levels (735 kN and 828 kN) and where 
the shear cracks crossed near the top of the member. This is in 
line with the ACI 318 Code provisions for stirrup forces at 
ULS conditions where it is assumed the stirrups will yield.  
It is also apparent from Fig. 7(c) that the demand near the top 

Fig. 7: Demand of stirrup JP-2 S6: (a) cracking pattern at JP-2 S6 location; (b) DFOS strains; 
and (c) reinforcement stresses

(b) (c)(a)
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hook of the stirrup was high, equaling 45 kN (98% of yield) at 
ULS. This meant the demand on the 135-degree stirrup hook 
was high even though the hook was on the flexural 
compression side of the member but also in flexurally 
uncracked concrete. This observation was found for many 
stirrup leg measurements from JP-1, JP-2, and JP-3, where 
diagonal shear cracks crossed near the top of the stirrup leg, 
highlighting the importance of proper stirrup detailing even in 
the uncracked flexural compression region. 

The impact of these high hook forces can also be seen in 
the flexural compression reinforcement strains, where the 
stirrup anchorage force induced bending as depicted in  
Fig. 8(a).5,8 Because the observed bending in Fig. 8(b) must 
have an associated shear force diagram, the approximate 
amount of shear transmitted by the stirrup hook to the 
compressive reinforcement can be found as presented in Fig. 
8(c) (total shear force measured from peak to trough). While 

the ~4 kN shear force at ULS is small 
relative to the 45 kN tension force 
measured at the top of the east stirrup 
leg in Fig. 7(c), this demonstrates the 
potential that distributed sensors offer in 
terms of understanding and indeed 
quantifying complex shear behavior. 

While Fig. 7 shows the DFOS 
measurements of a single stirrup leg, 
Fig. 9 summarizes the peak demand of 
all the stirrups in specimen JP-2 for 
loads after shear cracking. The 
measured peak strains averaged 
between the two stirrup legs are 
presented for the 14 stirrups in Fig. 9(b) 

while the corresponding stresses are plotted in Fig. 9(c). 
Figure 9(b) shows how increasing the applied load resulted in 
increased stirrup strains generally, where the maximum was 
found in the critical region for shear design (d from the 
supports and point load as in ACI 318). The highest measured 
strain was in S12 at the ULS load stage (P = 828 kN or 96% 
of the peak load), where the strain exceeded 16,000 microstrain 
or 1.6% strain in the shear span where the shear failure was 
observed. The lowest stirrup strains were measured where the 
shear force diagram approached zero or switched signs in the 
S2 and S15 stirrups near the support plates and the S8 and S9 
stirrups near the load plate. 

The peak stirrup stresses, however, tell a different story 
where the stirrup stress demand was essentially constant along 
the entire shear span. This occurred because the stirrups were 
almost all yielding for most of the load levels as shown in Fig. 
9(b) and (c), except near the disturbed regions at the member 
ends. Importantly, the stirrups were observed to yield as early 
as P = 540 kN (62% of the peak load), clearly demonstrating 
that reinforced concrete members do not fail once a stirrup 
first yields—a common misconception. Additional applied 
load can be resisted due to the rotating angle of the principal 
compressive stress field, when considered in an average sense, 
or with additional shear on the crack, when considered locally 
at the crack.

Another finding from Fig. 9(c) is how high the peak 
stresses increased for the stirrups nearest to the point load 
(S8 and S9), which is a region where lower demand in the 
stirrups might be expected since they were within a distance 
(d) of the load plate. However, because cracks C4 and C8 turn 
towards the point load, the cracks intercept S8 and S9, causing 
nearly 400 MPa of stress at ULS conditions. Meanwhile, 
clamping action prevents cracks from forming near the pin 
and roller supports, explaining why the measured strains and 
stresses are relatively lower for S2 and S15. 

Shear resistance reinforcement and concrete 
contribution

Using the distributed measurements over the height of the 
stirrups, the resistance which stirrups provide along a crack 

Fig. 8: Impact of high hook forces: (a) schematic of anchorage-induced compression bar 
bending; (b) measured moment of 20M compressive reinforcement; and (c) measured shear 
of 20M compressive reinforcement

(a) (b) (c)

Fig. 9: Peak stirrup demand for all stirrups in JP-2: (a) cracking 
pattern for JP-2 at ULS; (b) strains from DFOS; and (c) stresses

(a)

(b)

(c)
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Fig. 10: Measured Vs with load calculated using DFOS strains for eight 
shear cracks from JP-1, JP-2, and JP-3, compared to ACI 318 Code 
predictions

Fig. 11: Measured Vs of JP-1, JP-2, and JP-3 cracks at ULS conditions 
compared to Vs + Vc estimate from ACI 318, and failure load of three 
beams

(Vs) can be quantified. The experimentally determined Vs for 
eight shear cracks in beams JP-1, JP-2, and JP-3 are presented 
in Fig. 10. The curves represent the cumulative stirrup forces 
which cross the shear cracks determined from the DFOS 
strain measurements. For example, for crack JP-3 C1, the Vs 
curve is made up of a total of four stirrups, where Vs is the 
total stirrup force from stirrups S5 to S8. As expected, the Vs 
was approximately zero for the three beams before shear 
cracking. But once shear cracking occurred, the Vs for most 
cracks does not equal the reaction force (they are below the 
1:1 line in the figure). Therefore, some other mechanism must 
contribute to resisting shear even at low applied loads, namely 
the concrete contribution Vc. However, in the case of crack 
JP-2 C1, the Vs exceeds the applied shear for some load levels. 
This is attributed to the flatter portion of crack JP-2 C1 
requiring high enough normal compressive stresses on the 
crack interface to allow Vs to exceed the reaction force. In 
Fig. 5, these normal stresses are labeled Ncr and can be seen 

to be predicted to be comparatively low for that crack 
geometry.

The behavioral differences in the shear crack Vs curves 
between the three beams show interesting trends worthy of a 
closer look. Generally, the shear resisted by Vs for JP-1 and 
JP-2 begin to plateau as the loading approaches ULS, while 
JP-3 has a more linear response up to ULS. This was because 
the stirrups of JP-1 and JP-2 were yielding, as shown in Fig. 7 
and 9 for JP-2, and thus the value of Vs was limited while for 
JP-3, the member reached flexural yield prior to a shear 
failure, limiting the demand on Vs. Figure 10 shows that 
immediately after diagonal cracking, the concrete and stirrup 
components (Vc and Vs) both contribute to the shear resistance. 
Given that the Vs curves are approximately parallel to the 1:1 
applied load line, the amount of Vc was reasonably constant 
during loading until the stirrups started to yield. At this point, 
the Vs term could not increase; thus, any additional shear must 
have been resisted by Vc alone. Eventually, this mechanism 
would also reach a limit as higher loads are associated with 
wider cracks and lower aggregate interlock capacity, so 
eventually the cracks would begin to slip uncontrollably—a 
shear failure.

The experimentally measured Vs values at ULS conditions 
from Fig. 10 are compared to the predictions of shear 
resistance (Vn = Vs + Vc) from ACI 318 in Fig. 11. For this 
study, all safety factors equalled unity. For the three shear 
reinforcement ratios tested, ACI 318 provided reasonable but 
fairly conservative estimates for Vs. Other design methods, 
such as the CSA16 or “AASHTO LRFD Bridge Design 
Specifications,”17 assume lower values of θ and thus predict a 
higher value of Vs closer to the average behavior shown in 
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Fig. 11.10 Figure 11 shows via the black line that the ACI 
Code made good predictions of the failure load, where the 
code-to-experimental failure load ratio was between 0.94 and 
1.14. The other codes, CSA and AASHTO, produced similar 
predictions of failure load where the code-to-experimental 
failure load ratio was between 0.90 and 1.11. While each 
method provided similarly good Vs + Vc predictions, the ACI 
Code has a lower Vs term, meaning that it must also have a 
higher Vc value than the other codes in order to produce a 
similar sum. The recent drop of the Vc value of members 
without stirrups in ACI 318-19 due to the size effect could be 
related to this difference as well, though more study is 
required to know if this is true in general. 

Summary and Key Findings
This study demonstrated how distributed sensing is a 

useful tool for unraveling the riddle of shear. The results were 
used to evaluate reinforced concrete behavior in comparison 
to the ACI 318 Code provisions and further the understanding 
of how shear is carried. The key findings from this study 
include:
 • Shear deflections can represent about 25% of the total 

deflection at service conditions for transfer girders, and up 
to 42% at ULS for members meeting minimum shear 
reinforcement requirements from ACI 318; 

 • Distributed measurements enable the individual shear force 
carrying mechanisms to be quantified and understood, 
namely Vs, Vc, and shear in the compression region (Vcomp). 
It was shown that considering aggregate interlock was 
necessary to maintain equilibrium;

 • Cracked reinforced concrete flexural members 
experience increased horizontal tension demand in the 
reinforcement due to shear and lower compression 
demands on the compression face. These decreased 
compression demands can cause cracks to form on the 
flexural compression face near regions of high shear and 
low moment demand (for example, at the support in 
simply supported members); 

 • Member failure does not typically occur at the onset of 
stirrup yielding as the rotating angle of the principal 
compressive stress field allows for higher shear to be 
resisted by making the principal compression stress in the 
concrete that carries the shear more efficient; and 

 • For the measured Vs at ULS conditions, ACI 318 was 
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shown to conservatively estimate Vs while the failure loads 
were estimated within 14% of the experimental values.
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